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1. Introduction. In many cases of importance a finite difference approximation 
to the eigenvalue problem of a second-order differential equation reduces the prob- 
lem to that of solving the eigenvalue problem of a tridiagonal matrix having the 
Sturm property. In this paper we illustrate the use of the Rayleigh quotient for 
obtaining a quadratically convergent iteration to the eigenvalues of such a matrix. 

If the finite difference approximation is to give a tridiagonal matrix having 
the Sturm property then there must be restrictions on the coefficients in the differ- 
ential equation and on the form of the boundary conditions. The type of problem 
we consider is defined in Section 2. 

The Rayleigh quotient iteration is derived in Section 3 where we also relate 
it to a class of quadratically convergent iterations. This section is included at the 
suggestion of a referee to whom I am indebted for several other constructive sugges- 
tions and, in particular, for bringing to my attention the paper by J. W. Cooley [1]. 

The Rayleigh quotient iteration is exemplified in Section 4. We show that it can 
be conveniently linked to a difference correction procedure for estimating the error 
in the solution of the finite difference approximation. The stability of the iteration 
is discussed in Section 5; and a routine which we have used on an electronic com- 
puter is described in Section 6. 

2. Finite Difference Approximations. In the usual notation the standard 
method of approximating to a second-order differential equation using finite 

2d22 d 
difference formulas on a grid of equispaced points equates h2 dX2 with 62, and h d 

with p5 where h is the grid spacing. For example, the equation 

(2.1) + p(x) T + (Xq(x) + r(x))y 0 
dX2 ~ x 

becomes 

(2.2) (62 + hp(x)48 + h2(Xq(x) + r(x))y = 0, 

and when written out at the jth grid point this gives 

(2.3) 1-- Pi) Yj-1 - (2 - h2(Xqj + rj))yyj+ + + - Pj) Yj+1 = 0. 

We assume boundary conditions 

(2.4) Ay(0) + BdY(O) 0 
(2.4) ~~~~~~~dx 

and y(e) = 0. 
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Setting h = e/n, xj = jh we have the finite difference approximations to (2.4) in 
the form 

(2.5) Y-1 = Yj + ayo, ax = 2h X 

yn = 0. 

Combining the boundary conditions (2.5) with the set of equations (2.3) for 
0 < j ? n - 1 we obtain an algebraic eigenvalue problem which we write as 

(2.6) (A + h2XQ)y = 0. 

Here y is the vector with components yj, 0 < j < n - 1, Q is a diagonal matrix 
whose (j + 1)st element is qj, and A is a tridiagonal matrix. We adopt the no- 
tation that the nonzero elements in the (j + 1) st row of A are cj, aj, bj . 

We assume that q(x) is strictly positive in 0 ? x < e, and that h can be chosen 

sufficiently small so that 
h 

pj p < 1, 1 < _ n - 1. From these assumptions it 

follows that the principal minors of the determinant of A + h2XQ have the Sturm 
property [2, p. 181-2], so that a technique of counting signs and bisection can be 
used to calculate the eigenvalues of (2.6). 

In general the matrix A is not symmetric. It can, however, be made symmetric 
by premultiplying it by a certain diagonal matrix D. If the (j + 1) th element of 
D is dj then the elements of the (. + 1) th row of DA are djcj , djaj, and djbj so 
that DA is symmetric if djcj = dj-lbj-l . This gives a recurrence for dj when one 
value which can be freely chosen is fixed. Thus we can always write equation (2.6) 
in the form 

(2.7) (DA + h2XDQ)y = 0 

where DA is symmetric, and where DQ is diagonal with positive elements. 
When p(x) is identically zero a more accurate finite difference formula (the 

Numerov formula) can be used to approximate to equation (2.1). This gives the 
difference equations 

( 1 + 22 (Xqj-1 + r,)) Yi-i - (2 - 5h6 q + ri)) y + 

+ (1 + 
h 

(Xqi+i + r Y+)) yi+j 0. 

In this case the appropriate boundary condition at x = 0 is 

(2.9) Y- I + h (Xq-l + rl)) = y (I + (Xql + rD) + ayo. 

These equations combine to give the eigenvalue problem 

(2.10) (M + h2XN) y = O 

where both M and N are tridiagonal matrices. It is not possible in general to make 
both M and N symmetric by premultiplying by a diagonal matrix. 
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3. Initial Value Techniques for Correcting an Approximate Eigenvalue. The 
methods we consider in this section have as a common feature that they seek to 
correct X by using an approximate eigenvector V which is obtained as the solution 
to an initial value problem. To compute V we choose V0 arbitrarily, then 

bo = -(h2Xqo + ao) Vo, 
and 

(3.1) bVj+j = -(h2Xqj + ai)Vi - ciViV, i = 2,3, , n -2. 

It is important to note that by suitable choice of Vo we can arrange for any one 
of the components of V to be fixed independent of the value of X. 

From equation (3.1) we see that the components of AV are 

bjVj+j + aidV + ciVi-1 = -h2XqiVi, i = 0, 1, ... , n - 2, 

CnlVn-2 + an-1V.- - h2Xqn-l1nVI + (h2Xqn-1 + an-1) Vn-1 + Cn-lVn-2 

so that V also satisfies 

(3.2) t (A + h2XQ)V = Oe. 

where en is a vector with 1 in the nth place, and zero in all other positions. Also 
03 vanishes whenever X is an eigenvalue of (2.6) so that A(X) is proportional to the 
characteristic polynomial of (2.6). 

One method of improving X is to calculate the Rayleigh quotient of equation 
(2.7) using the approximate eigenvector V. In this case the Rayleigh quotient is 

V'DAV _V*'AV* 
V'DQV V*'QV where V* = DV. 

Making use of equation (3.2) we have 

(3.3) V* AV = _h2X + oV*,-. 
V*IQV V*'QV' 

It will be seen that (3.3) gives the correction to X in a very economical form. 
Another possibility is to apply Newton's method to find the zeros of i3(X). 

This suggests that X- do is a better approximation to the desired eigenvalue. 

We can calculate d- by differentiating equation (3.2). This gives us 

(3.4) (A + h2XQ) dV + h2QV = dO en. dX- dX 

If we take the scalar product of equation (3.4) with en we have 

(3.5) Cn-1 dVX-2 + (an-1 + h2Xq1_J) dVn + h2qn-1 Vn-1 = d- 
dX dX dx'~d 

This equation forms the basis of the procedure described by Fox (see [3], Chapter 

8, and references given there). He calculates dV by choosing the scale of V so that 
dX 

Vo in equation (3.1) is independent of X. This givesd~ = 0, and we have 
dX 
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bo ddV - (h2Xqo + ao) dVo - h2qoV0 = -h2qo Vo, 

(3.6) b d+i = - (h2Xqi + ai) dV, -_ dVi-_ h2qiVi dX d 
-dX 

qV% 

i = 1,2,2 ,n 2 

However, if we take the scalar product of equation (3.4) with V* we find, on 
noting that V* satisfies 

(A' + h2XQ)V* = #3Den =dn-iden, 

that 

(3.7) dn-13en' IdV + h2V* QV = V* df 

The correction formula given by Cooley [1] can be derived from (3.7) by choosing 
d_ n1 IIN 

the scale of V so that Vn-1 is independent of X. Then n= - = 0 and 

d= - 

h2 V .*QV The correction to X is-h2 V 3 
. It is identical with that given 

dX- V*1 V*IQV 
by the Rayleigh quotient (3.3). 

It does not follow from this result that Fox's procedure is equivalent to an 

application of the Rayleigh quotient because the value of : is dependent on the 

way in which the scale is fixed in each method (although the correction to X in 

each case is independent of the choice of scale), and the scale factors are in general 

different functions of X. We make this point clear by relating the principal minors 

of the determinant of (2.6) to the successive terms in the recurrence (3.1). 

The principal minors of (2.6) satisfy the recurrence 

Do = 1. 

Di - (ao + h2Xqo)Do 

Di+= (ai + h2Xqi)Di -cibi-iDi-i 

D det (A + h2XQ) - (an-1 + h2Xqn_1)Dn1 - cn-1bn-2Dn-2. 

If we put Vo = sDo where s is the scale factor, then 

bo V = -sDi, 
and 

bi V2 = -(h2Xqi + a) V1 - c1 Vo 

= (h 2Xq + a,) sDi _ sDo= sD2 
bo bo 

so that bobV2 = sD2 . This procedure can be continued, giving 

(3.8) sDi = (-lI)bob1 * bi- Vi 

and, in particular, 

(3.9) D = det (A + h2XQ) = (1)n-1 bobi 
... 

bn-2. 
s 
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If V0 is fixed independent of X then s is a constant, and 3 differs from the char- 
acteristic polynomial only by a constant multiplier. Therefore, Fox's method is 
equivalent to applying Newton's method to the characteristic polynomial. If 
Vn_1 is fixed independent of X then, by (3.8), s is inversely proportional to Dn_ 
so that 3 differs from D/D.-, only by a constant multiplier. Now, by a well-known 
result for Sturm sequences, the zeros of Dn,- interlace those of D so that for the 
Rayleigh quotient to give a useful correction to X it is necessary that X lie inside 
the interval containing the desired eigenvalue bounded by the pair of adjacent 
zeros of Dn1. No such restriction applies to Fox's iteration. 

The results obtained in this section can readily be extended to the Numerov 
difference approximation (equation (2.10)). The initial value procedure gives a 
vector V satisfying 

(3.10) (M + h 2XN)V = de, 

and the only change is in the definition of V* which we take as the solution of 

(3.11) (M' + h2XN') V* = Ohen . 

We can calculate V* by the initial value procedure. The value of d* then depends 
on the choice of scale. The Rayleigh quotient is given by 

(3!12) V *MV - -h2X + V* 
V*?NV V*'NV' 

and this determines the correction to X. The application of Newton's method pro- 
ceeds exactly as before. 

4. The Rayleigh Quotient Exemplified. In this section we exemplify the use 
of the Rayleigh quotient by applying it to calculate the fundamental eigenvalue 
of the standard finite difference approximation (equation (2.3)) to the differential 
equation 

(4.1) dy + _ + y =0 

with the boundary conditions d(0) - 0, y(l) = 0. Asdy 0 when x = 0 we 
dx ~~~~dx 

see that the required solution to (4.1) satisfies 

(4.2) 2 d2+ y=0 

at this point. Also it is an even function about x = 0 so that the finite difference 

approximation (equation (2.5)) to the boundary condition (?) - 0 is exact. 
dx 

In this case Q is the unit matrix. Taking n = 4, h = we find that A is the 
matrix 

-4 4 

L -2 -2 
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It is readily verified that a suitable diagonal matrix such that DA is symmetric is 

D= 48 . 
121 

In the table that follows we give the result of the computation. We use equation 
(3.1) to run forward the approximate eigenvectors (rounding to six decimals). 
The corrections to X are shown in the final column. 

h2 Y (0) Y (1) Y 2) Y 4) X V*1V 

.312500 1.000000 .921875 .703776 .396973 - .083412 - .040742 

.353242 1.000000 .911689 .667555 .332428 .008867 .004058 

.349184 1.000000 .912704 .671138 .338718 .000120 .000055 

.349129 1.000000 .912718 .671187 .338804 .000001 - 

The quadratic nature of the convergence is clearly indicated. 
For this example the Rayleigh quotient requires about half as much arithmetic 

as Fox's method. It has another advantage for the vector V* is readily to hand if 
it is required to compute an estimate of the deviation of the computed X from the 
exact eigenvalue of the differential equation by using the difference correction (see 
reference [3]). Returning to our example we set 

ey= 1 
= 

2 3 
+ 64? 

except when i 0 when 

eyo = Y64yo 

As the finite difference boundary conditions are exact in this case an estimate of 
the correction to X is given by 

42 V*1ey (4.3) h2 A = V*ty 

The difference table is 

Yi 6 62 63 L63 64 

-1 .912718 
0 1.000000 - .174564 0 .040630 

- .087282 .020315 
1 .912718 - .154249 .041856 .043082 

- .241531 .063399 
2 .671187 - .090852 .073914 .021034 

- .332383 .084431 
3 .338804 - .006421 .083071 - .002720 

- .338804 .081711 
4 0 .075290 

- .263514 
5 -.263514 

Equation (4.3) gives us h2AX = .01184. The basic difference equation gives X = 

5.59. Taking into account the difference correction gives X = 5.776 which com- 
pares much more favourably with the exact value (X = 5.781 *.. ). 
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5. The Problem of Stability. The crucial factor to be considered in suggesting 
the Rayleigh quotient procedure as a general routine is the stability of the calcula- 
tion of the approximate eigenvector; it is well known that we cannot use the pro- 
cedure summarized in equation (3.1) in general as the resulting vector may well 
differ substantially from the exact eigenvector. There is, however, numerical 
evidence that Fox's iteration works (and gives quadratic convergence) for the 
eigenvalue at least in some cases of instability in the calculation of the vector 
(see [4]). It is doubtful if the Rayleigh quotient iteration can be successful in these 
circumstances, and it is interesting that the numerical evidence would seem to 
indicate that there is a root of D1_1 very close to the desired root of D in the direc- 
tion of increasing X. In many cases this evidence can be supported by heuristic 
argument. 

In solving problems associated with second-order differential equations one 
often knows beforehand that instability is likely for part of the range for which the 
solution is defined. For example, the desired solution may have the character of an 
exponential decay in some region where the second solution to the differential 
equation is changing rapidly, and we may anticipate that the solutions of our 
second-order difference equation mirror this behavior. However, if instability is 
likely when running forward due to a rapidly increasing spurious solution then 
we may expect stability if we reverse the direction of the computation. This device 
works well within the limits of its applicability. 

With little loss of convenience we may march the approximate eigenvector 
back from the last row of the matrix as well as forward from the first row. If we 
match the computations by making their rth components agree then we have 
solved 

(5.1) (A + h2XQ)V=fe7 

where 1 ? r ? n. The analysis of Section 3 can be applied to (5.1). We find that 
Newton's method applied to d3(X) with Vo fixed independent of X (Fox's correction) 
is equivalent to applying Newton's method to D/Enr+i , while the Rayleigh quo- 
tient is equivalent to Newton's method applied to D/Dr-iEn-r+l Here En-r+l is 
the principal minor with diagonal elements (ar + h2Xqr), * -, (a.-, + h2Xgqn1). 

If it is necessary to do more than march from both ends to achieve stability 
then the initial value techniques lose much of their simplicity. In this case we are 
forced to solve an equation of the form 

(5.2) (A + h2XQ)V = k 

where we have considerable freedom in the choice of k. The calculation of an 
eigenvector of A + h2XQ from (5.2) has been discussed in detail by Wilkinson in 
reference [5]. In particular, he suggests that k at any stage should be the approxi- 
mate eigenvector calculated in the previous iteration. 

In considering finite difference approximations to eigenvalues of higher-order 
differential equations we find that A is no longer tridiagonal, and that the Rayleigh 
quotient procedure cannot be readily combined with an initial value procedure 
for the desired eigenvector. Fox's procedure can be modified to apply in this case 
[31 and [4]. The cost is the addition of further variational equations similar to (3.6). 
However, the Rayleigh quotient is defined whenever the approximate vectors 
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V and V* are available, and Wilkinson's experience in [51 suggests the iteration 

(A + h2X8-1 Q)VS = VI-, 

(5.3) (A' + h2X81 Q)VI* = 1 

h2Xs h2= s-i - VQVS 

Setting A + h2X\Q= LU, then 

Vs = U1_V~ 

and 

(5.4) V* = (L-l)'(U-l)'V* 

so that each iteration (5.3) requires only one matrix factorization. For numerical 
stability it would be necessary to use the method of triangular factorization with 
interchanges given by Wilkinson in [6, p. 18-19]. 

6. A Computational Procedure. This paper is based on experience gained over 
several years in solving differential equation eigenvalue problems which arise in 
the theory of the propagation of sound in the ocean treated as a layered fluid medium 
(the theoretical background to this work has been described in [7]). Here one bound- 
ary is taken at an infinite depth (which is treated as very great in the numerical 
work); the differential equations have, in general, mixed spectra. Our concern has 
been to calculate the eigenvalues and eigenfunctions in the discrete spectrum. 

The differential equation has the form 

d2 

dX2 + (X + q(x))y = 0 

so that the Numerov difference approximation (equation (2.10)) is applicable, 
and we solve this in the following stages. 

(I) We begin by using the standard finite difference approximation. We use 
the Sturm count procedure to roughly isolate an eigenvalue; and we then use the 
Rayleigh quotient formula to obtain a quadratically convergent iteration to it. 
The use of the standard equation instead of the Numerov equation at this stage 
approximately halves our arithmetic. 

(II) We calculate an O(h2) improvement to this value of X using the difference 
correction technique exactly as described in Section 4. This gives an eigenvalue 
having the same kind of order of magnitude deviation from the exact value as 
does the corresponding eigenvalue of (2.10). 

(III) We use the Rayleigh quotient iteration (3.12) to calculate the accurate 
eigenvalue of equation (2.10) from the value of X obtained in stage (II). We also 
obtain a useful improvement in the accuracy of the eigenvector. If further refine- 
ment is required we can calculate an improvement to X (and, if desired, to y) by 
a further stage of difference correction. 

Using values of n up to 100 we have been able to obtain stable computations by 
marching forward the calculation of the eigenvector from each boundary point, 
and matching at a suitably chosen interior point. There is physical evidence to 
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support the use of these tactics because regions of low acoustic pressure can occur 
near the surface of the ocean as well as at great depth. In no case have more than 
two iterations been required in stage (III) of the computation. Comparison of 
the values of X obtained at the various stages of the computation gives us useful 
information about the accuracy of our approximations. 
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